翻訳と辞書
Words near each other
・ Binod Das
・ Binod Kanungo
・ Binod Kumar Shah
・ Binod Pradhan
・ Binod Sethi
・ Binod Singh
・ Binodal
・ Binodanand Jha
・ Binodini Dasi
・ Binodini Girls' High School
・ Binokor Tashkent
・ Binola, West Virginia
・ Binoli
・ Binomial
・ Binomial (polynomial)
Binomial approximation
・ Binomial coefficient
・ Binomial differential equation
・ Binomial distribution
・ Binomial heap
・ Binomial identity
・ Binomial inverse theorem
・ Binomial nomenclature
・ Binomial number
・ Binomial options pricing model
・ Binomial pair
・ Binomial proportion confidence interval
・ Binomial QMF
・ Binomial regression
・ Binomial ring


Dictionary Lists
翻訳と辞書 辞書検索 [ 開発暫定版 ]
スポンサード リンク

Binomial approximation : ウィキペディア英語版
Binomial approximation

The binomial approximation is useful for approximately calculating powers of sums of a small number and 1. It states that if x is a real number close to 0 and \alpha is a real number, then
: (1 + x)^\alpha \approx 1 + \alpha x.
This approximation can be obtained by using the binomial theorem and ignoring the terms beyond the first two.
By Bernoulli's inequality, the left-hand side of this relation is greater than or equal to the right-hand side whenever x>-1 and \alpha \geq 1.
== Derivation using linear approximation==
The function
: f(x) = (1 + x)^
is a smooth function for ''x'' near 0. Thus, standard linear approximation tools from calculus apply: one has
: f'(x) = \alpha (1 + x)^
and so
: f'(0) = \alpha.
Thus
: f(x) \approx f(0) + f'(0)(x - 0) = 1 + \alpha x.

抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)
ウィキペディアで「Binomial approximation」の詳細全文を読む



スポンサード リンク
翻訳と辞書 : 翻訳のためのインターネットリソース

Copyright(C) kotoba.ne.jp 1997-2016. All Rights Reserved.